Standard antiepileptic drugs fail to block epileptiform activity in rat organotypic hippocampal slice cultures

标准抗癫痫药物无法阻断大鼠器官型海马切片培养中的癫痫样活动

阅读:5
作者:K Albus, A Wahab, U Heinemann

Background and purpose

Earlier studies had demonstrated that tonic-clonic seizure-like events (SLEs) resembling electrographic correlates of limbic seizures in animals and humans can be induced in organotypic hippocampal slice cultures (OHSCs). We have explored OHSCs for their suitability to serve as in vitro models of limbic seizures for studying seizure mechanisms and screening new antiepileptic compounds. Experimental approach: OHSCs were cultivated according to the interface method. Neuronal activity and extracellular potassium concentration were recorded under submerged conditions. SLEs were induced by lowering magnesium concentration or by applying the potassium channel blocker 4-aminopyridine. The effects of standard antiepileptic drugs (AEDs), carbamazepine, phenytoin, valproic acid, clonazepam, diazepam and phenobarbital sodium on SLEs were analysed. Key

Purpose

Earlier studies had demonstrated that tonic-clonic seizure-like events (SLEs) resembling electrographic correlates of limbic seizures in animals and humans can be induced in organotypic hippocampal slice cultures (OHSCs). We have explored OHSCs for their suitability to serve as in vitro models of limbic seizures for studying seizure mechanisms and screening new antiepileptic compounds. Experimental approach: OHSCs were cultivated according to the interface method. Neuronal activity and extracellular potassium concentration were recorded under submerged conditions. SLEs were induced by lowering magnesium concentration or by applying the potassium channel blocker 4-aminopyridine. The effects of standard antiepileptic drugs (AEDs), carbamazepine, phenytoin, valproic acid, clonazepam, diazepam and phenobarbital sodium on SLEs were analysed. Key

Results

In more than 93% of OHSCs, AEDs did not prevent the induction of SLEs or stop ongoing seizure activity even when toxic concentrations were applied. This pharmacoresistance was independent of the method of seizure provocation, postnatal age at explantation (P2-P10) and cultivation time in vitro (2 months). SLEs were reversibly blocked by glutamate antagonists or the GABA(A)-agonist muscimol. Conclusions and implications: We present a simple to establish in vitro model of tonic-clonic SLEs that is a priori pharmacoresistant and thus has an advantage over animal models of pharmacoresistant seizures in which responders and non-responders can be sorted out only after an experiment. OHSCs could be suitable for exploring mechanisms of pharmacoresistant seizures and be used for the identification of new anticonvulsive compounds eventually effective in drug refractory epilepsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。