Conclusion
PRP-MNs show convenient, minimally invasive, painless, inexpensive manufacture, storable and sustained effects in boosting hair regeneration.
Results
PRP gel interpenetrated with the photocrosslinkable gelatin methacryloyl (GelMA) to realize sustained release of growth factors (GFs) and led to 14% growth in mechanical strength of a single microneedle whose strength reached 1.21 N which is sufficient to penetrate the stratum corneum. PRP-MNs' release of VEGF, PDGF, and TGF-β were characterized and quantitatively around the hair follicles (HFs) for 4-6 days consecutively. PRP-MNs promoted hair regrowth in mice models. From transcriptome sequencing, PRP-MNs induced hair regrowth through angiogenesis and proliferation. The mechanical and TGF-β sensitive gene Ankrd1 was significantly upregulated by PRP-MNs treatment.
