Conclusions
Due to lower basal levels of some GABAAR-active steroids in WSP-1 mice, a withdrawal-induced decrease in WSP-1 mice may have a greater physiological consequence than a similar decrease in WSR-1 mice. Because WSP-1 mice also exhibit a reduction in GABAAR sensitivity to neuroactive steroids during withdrawal, it is possible that the combined decrease in neuroactive steroids and GABAAR sensitivity during ethanol withdrawal in WSP-1 mice represents a neurochemical substrate for severe ethanol withdrawal.
Methods
After validation of a gas chromatography-mass spectrometry method for the simultaneous quantification of ten neuroactive steroids, we analyzed plasma from control male WSP-1 and WSR-1 mice and during ethanol withdrawal.
Results
We quantified levels of nine neuroactive steroids in WSP-1 and WSR-1 plasma; levels of pregnanolone were not detectable. Basal levels of five neuroactive steroids were higher in WSR-1 versus WSP-1 mice. Ethanol withdrawal significantly suppressed five neuroactive steroids in WSP-1 and WSR-1 mice, including ALLO. Conclusions: Due to lower basal levels of some GABAAR-active steroids in WSP-1 mice, a withdrawal-induced decrease in WSP-1 mice may have a greater physiological consequence than a similar decrease in WSR-1 mice. Because WSP-1 mice also exhibit a reduction in GABAAR sensitivity to neuroactive steroids during withdrawal, it is possible that the combined decrease in neuroactive steroids and GABAAR sensitivity during ethanol withdrawal in WSP-1 mice represents a neurochemical substrate for severe ethanol withdrawal.
