Glucose Activates Lysine-Specific Demethylase 1 through the KEAP1/p62 Pathway

葡萄糖通过 KEAP1/p62 通路激活赖氨酸特异性脱甲基酶 1

阅读:7
作者:Chiao-Yun Lin, Chen-Bin Chang, Ren-Chin Wu, Angel Chao, Yun-Shien Lee, Chi-Neu Tsai, Chih-Hao Chen, Chih-Feng Yen, Chia-Lung Tsai

Abstract

Endometrial cancer incidence increases annually. Several risk factors, including high glucose intake, are associated with endometrial cancer. We investigated whether glucose affects lysine-specific demethylase 1 (LSD1) expression and the responsible molecular mechanisms. A high concentration of glucose stimulated p62 phosphorylation and increased LSD1 protein expression. Knockdown of p62 or treatment with mammalian target of rapamycin (mTOR), transforming growth factor-β activated kinase 1 (TAK1), casein kinase 1 (CK1), and protein kinase C (PKC) inhibitors abrogated glucose-regulated LSD1 expression. Unphosphorylated p62 and LSD1 formed a complex with Kelch-like ECH-associated protein 1 (KEAP1) and were degraded by the KEAP1-dependent proteasome. Phosphorylated p62 increased LSD1 protein expression by escaping the KEAP1 proteasome complex. LSD1 and KEAP1 interaction was enhanced in the presence of the nuclear factor erythroid 2-related factor 2 (NRF2) protein. LSD1 also participated in antioxidant gene regulation with NRF2. In diabetic mice, increasing LSD1and phospho-p62 expression was observed in uterine epithelial cells. Our results indicate that glucose induces p62 phosphorylation through mTOR, TAK1, CK1, and PKC kinases. Subsequently, phospho-p62 competitively interacts with KEAP1 and releases NRF2-LSD1 from the KEAP1 proteasome complex. Our findings may have public health implications for the prevention of endometrial cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。