Establishment of Stable Knockdown of MACC1 Oncogene in Patient-Derived Ovarian Cancer Organoids

在患者来源的卵巢癌类器官中建立 MACC1 致癌基因的稳定敲除

阅读:6
作者:Sophia Hierlmayer, Liliia Hladchenko, Juliane Reichenbach, Christoph Klein, Sven Mahner, Fabian Trillsch, Mirjana Kessler, Anca Chelariu-Raicu

Abstract

High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecological malignancy, and there is still an unmet medical need to deepen basic research on its origins and mechanisms of progression. Patient-derived organoids of high-grade serous ovarian cancer (HGSOC-PDO) are a powerful model to study the complexity of ovarian cancer as they maintain, in vitro, the mutational profile and cellular architecture of the cancer tissue. Genetic modifications by lentiviral transduction allow novel insights into signaling pathways and the potential identification of biomarkers regarding the evolution of drug resistance. Here, we provide an in-depth and detailed protocol to successfully modify the gene expression of HGSOC-PDOs by lentiviral transduction. As an example, we validate our protocol and create a stable knockdown of the MACC1 oncogene with an efficacy of ≥72% in two HGSOC-PDO lines, which remained stable for >3 months in culture. Moreover, we explain step-by-step the sample preparation for the validation procedures on transcriptional (qPCR) and protein (Western Blot) levels. Sustained downregulation of specific genes by lentiviral transduction enables the analysis of the resulting phenotypic and morphological changes. It serves as a valuable in-vitro model to study the mechanisms of ovarian cancer pathogenesis and allows for the evaluation of therapeutic approaches.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。