Circ-PRKDC Contributes to 5-Fluorouracil Resistance of Colorectal Cancer Cells by Regulating miR-375/FOXM1 Axis and Wnt/β-Catenin Pathway

Circ-PRKDC 通过调节 miR-375/FOXM1 轴和 Wnt/β-Catenin 通路导致结直肠癌细胞产生 5-氟尿嘧啶耐药性

阅读:8
作者:Hao Chen, Lingyu Pei, Peng Xie, Guancheng Guo

Conclusion

Circ-PRKDC enhanced 5-FU resistance in CRC by regulating FOXM1/miR-375 axis and wnt/β-catenin pathway.

Methods

The levels of circ-PRKDC, microRNA-375 (miR-375) and forkhead box protein M1 (FOXM1) mRNA were determined by quantitative real-time polymerase chain reaction (qRT-PCR). IC50 of 5-FU, cell colony formation ability and invasion were assessed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay and transwell assay, respectively. The protein levels of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), FOXM1, β-catenin and c-Myc were measured via Western blot assay. The targeting relationship between miR-375 and circ-PRKDC or FOXM1 was investigated by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The effect of circ-PRKDC in vivo was explored by murine xenograft model assay.

Purpose

Diverse circular RNAs (circRNAs) participate in the regulation of drug resistance in human cancers. However, the role of circRNAs in drug resistance in colorectal cancer (CRC) is dismal. In this study, we aimed to explore the effect of circ-PRKDC on 5-fluorouracil (5-FU) resistance in CRC. Materials and

Results

Circ-PRKDC was upregulated in 5-FU-resistant CRC tissues and cells. Circ-PRKDC silencing repressed 5-FU resistance, cell colony formation and invasion in 5-FU-resistant CRC cells in vitro and inhibited 5-FU resistance in vivo. MiR-375 was a target of circ-PRKDC and miR-375 inhibition reversed the effects of circ-PRKDC silencing on 5-FU resistance, cell colony formation and invasion. FOXM1 was a direct target gene of miR-375. MiR-375 suppressed 5-FU resistance by targeting FOXM1. Moreover, circ-PRKDC knockdown decreased FOXM1 expression by targeting miR-375. Additionally, circ-PRKDC knockdown impeded wnt/β-catenin pathway by regulating miR-375 and FOXM1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。