A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors

小鼠巨核细胞和人类血小板中 P2X1 受体功能研究揭示其与 P2Y 受体具有协同作用

阅读:11
作者:Catherine Vial, Michael G Rolf, Martyn P Mahaut-Smith, Richard J Evans

Abstract

We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric P2X(1) receptors. P2X(1) receptor deficiency had no effect on MK (CD 41) numbers or size distribution, showing that it is not essential for normal MK development. P2Y receptor-stimulated [Ca(2+)](i) responses were unaffected in MKs from P2X(1)(-/-) mice, however the inward cation current associated with Ca(2+) release was reduced by approximately 50%, suggesting an interaction between the membrane conductances activated by P2X(1) and P2Y receptors. Interaction between P2X(1) and P2Y receptors in human platelets was also examined using [Ca(2+)](i) recordings from cell suspensions. Alpha,beta-meATP (10 microM) evoked a rapid transient P2X(1) receptor-mediated increase in [Ca(2+)](i), whereas ADP-(10 microM) evoked P2Y receptor responses were slower, peaked at a higher level and remained elevated for longer periods. Co-application of alpha, beta-meATP and ADP resulted in marked acceleration and amplification of the peak [Ca(2+)](i) response. We conclude that ionotropic P2X(1) receptors may play a priming role in the subsequent activation of metabotropic P2Y receptors during platelet stimulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。