Hyperglycemia and hyperlipidemia can induce morphophysiological changes in rat cardiac cell line

高血糖和高脂血症可诱导大鼠心脏细胞形态生理变化

阅读:4
作者:Rocío Varela, Inés Rauschert, Gerardo Romanelli, Andrés Alberro, Juan C Benech

Abstract

H9c2 cardiac cells were incubated under the control condition and at different hyperglycemic and hyperlipidemic media, and the following parameters were determined and quantified: a) cell death, b) type of cell death, and c) changes in cell length, width and height. Of all the proven media, the one that showed the greatest differences compared to the control was the medium glucose (G) 33 mM + 500 μM palmitic acid. This condition was called the hyperglycemic and hyperlipidemic condition (HHC). Incubation of H9c2 cells in HHC promoted 5.2 times greater total cell death when compared to the control. Of the total death ofthe HHC cells, 38.6% was late apoptotic and 8.3% early apoptotic. HHC also changes cell morphology. The reordering of the actin cytoskeleton and cell stiffness was also studied in control and HHC cells. The actin cytoskeleton was quantified and the number and distance of actin bundles were not the same in the control as under HHC. Young's modulus images show a map of cell stiffness. Cells incubated in HHC with the reordered actin cytoskeleton were stiffer than those incubated in control. The region of greatest stiffness was the peripheral zone of HHC cells (where the number of actin bundles was higher and the distance between them smaller). Our results suggest a correlation between the reordering of the actin cytoskeleton and cell stiffness. Thus, our study showed that HHC can promote morphophysiological changes in rat cardiac cells confirming that gluco-and lipotoxicity may play a central role in the development of diabetic cardiomyopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。