Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors

组蛋白去乙酰化酶 5 在硬皮病内皮细胞中过度表达,并通过抑制促血管生成因子损害血管生成

阅读:5
作者:Pei-Suen Tsou, Jonathan D Wren, M Asif Amin, Elena Schiopu, David A Fox, Dinesh Khanna, Amr H Sawalha

Conclusion

Several novel HDAC5-regulated target genes associated with impaired angiogenesis were identified in SSc ECs by ATAC-seq. The results of this study provide a potential link between epigenetic regulation and impaired angiogenesis in SSc, and identify a novel mechanism for the dysregulated angiogenesis that characterizes this disease.

Methods

Dermal ECs were isolated from patients with diffuse cutaneous SSc and healthy controls. Angiogenesis was assessed using an in vitro Matrigel tube formation assay. An assay for transposase-accessible chromatin using sequencing (ATAC-seq) was performed to assess and localize the genome-wide effects of HDAC5 knockdown on chromatin accessibility.

Objective

Vascular dysfunction represents a disease-initiating event in systemic sclerosis (SSc; scleroderma).

Results

The expression of HDAC5 was significantly increased in ECs from patients with SSc compared to healthy control ECs. Silencing of HDAC5 in SSc ECs restored normal angiogenesis. HDAC5 knockdown followed by ATAC-seq assay in SSc ECs identified key HDAC5-regulated genes involved in angiogenesis and fibrosis, such as CYR61, PVRL2, and FSTL1. Simultaneous knockdown of HDAC5 in conjunction with either CYR61, PVRL2, or FSTL1 inhibited angiogenesis in SSc ECs. Conversely, overexpression of these genes individually led to an increase in tube formation as assessed by Matrigel assay, suggesting that these genes play functional roles in the impairment of angiogenesis in SSc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。