Background and purpose
The epithelial sodium channel (ENaC) is expressed in endothelial cells and acts as a negative modulator of vasodilatation. Oxidized LDL (ox-LDL) is a key pathological factor in endothelial dysfunction. In the present study we examined the role of ENaC in ox-LDL-induced endothelial dysfunction and its associated signal transduction pathway. Experimental approach: Patch clamp techniques combined with pharmacological approaches were used to examine ENaC activity in the endothelial cells of a split-open mouse thoracic aorta. Western blot analysis was used to determine ENaC expression in the aorta. The aorta relaxation was measured using a wire myograph assay. Key
Purpose
The epithelial sodium channel (ENaC) is expressed in endothelial cells and acts as a negative modulator of vasodilatation. Oxidized LDL (ox-LDL) is a key pathological factor in endothelial dysfunction. In the present study we examined the role of ENaC in ox-LDL-induced endothelial dysfunction and its associated signal transduction pathway. Experimental approach: Patch clamp techniques combined with pharmacological approaches were used to examine ENaC activity in the endothelial cells of a split-open mouse thoracic aorta. Western blot analysis was used to determine ENaC expression in the aorta. The aorta relaxation was measured using a wire myograph assay. Key
Results
Ox-LDL, but not LDL, significantly increased ENaC activity in the endothelial cells attached to split-open thoracic aortas, and the increase was inhibited by a lectin-like ox-LDL receptor-1 (LOX-1) antagonist (κ-carrageenan), an NADPH oxidase inhibitor (apocynin), and a scavenger of ROS (TEMPOL). Sodium nitroprusside, an NO donor, diminished the ox-LDL-mediated activation of ENaC, and this effect was abolished by inhibiting soluble guanylate cyclase (sGC) and PKG. Ox-LDL reduced the endothelium-dependent vasodilatation of the aorta pectoralis induced by ACh, and this reduction was partially restored by blocking ENaC.
