Randomly incorporated genomic N6-methyldeoxyadenosine delays zygotic transcription initiation in a cnidarian

随机掺入基因组 N6-甲基脱氧腺苷延迟刺胞动物合子转录起始

阅读:6
作者:Febrimarsa, Sebastian G Gornik, Sofia N Barreira, Miguel Salinas-Saavedra, Christine E Schnitzler, Andreas D Baxevanis, Uri Frank

Abstract

N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。