Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains

基因组重复、错误组装和重新注释:牙龈卟啉单胞菌参考菌株长读重测序案例研究

阅读:6
作者:Luis Acuña-Amador, Aline Primot, Edouard Cadieu, Alain Roulet, Frédérique Barloy-Hubler

Background

Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation.

Conclusions

In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.

Results

We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. Conclusions: In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。