Enhanced NaFe0.5Mn0.5O2/C Nanocomposite as a Cathode for Sodium-Ion Batteries

增强型 NaFe0.5Mn0.5O2/C 纳米复合材料作为钠离子电池的正极

阅读:5
作者:Murugan Nanthagopal, Chang Won Ho, Nitheesha Shaji, Gyu Sang Sim, Murugesan Varun Karthik, Hong Ki Kim, Chang Woo Lee

Abstract

Sodium-ion batteries (SIBs) have emerged as an alternative candidate in the field of energy storage applications. To achieve the commercial success of SIBs, the designing of active materials is highly important. O3-type layered-NaFe0.5Mn0.5O2 (NFM) materials provide higher specific capacity along with Earth-abundance and low cost. Nevertheless, the material possesses some disadvantages, such as a low rate capability and severe capacity fading during cycling. To overcome such drawbacks, composite O3-type layered NFM with carbon has been prepared for the cathode electrode of SIBs through a facile solution combustion method followed by calcination process. The introduction of carbon sources into NFM material provides excellent electrochemical performances; moreover, the practical limitations of NFM material such as low electrical conductivity, structural degradation, and cycle life are effectively controlled by introducing carbon sources into the host material. The NFM/C-2 material delivers the specific charge capacities of 171, 178, and 166 mA h g-1; and specific discharge capacities of 188, 169, and 162 mA h g-1, in the first 3 cycles, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。