Intrinsic resistance to ROS1 inhibition in a patient with CD74-ROS1 mediated by AXL overexpression

CD74-ROS1 患者对 ROS1 抑制的内在抗性是由 AXL 过表达介导的

阅读:5
作者:Tara L Peters, Nan Chen, Logan C Tyler, Anh T Le, Anastasios Dimou, Robert C Doebele

Background

The vast majority of patients with ROS1 positive non-small cell lung cancer (NSCLC) derive clinical benefit from currently approved ROS1 therapies, including crizotinib and entrectinib. However, a small proportion of patients treated with ROS1 inhibitors fail to derive any clinical benefit and demonstrate rapid disease progression. The biological mechanisms underpinning intrinsic resistance remain poorly understood for oncogene-driven cancers.

Conclusions

In summary, we demonstrate that AXL overexpression is a mechanism of intrinsic resistance to ROS1 inhibitors.

Methods

We generated a patient-derived cell line, CUTO33, from a ROS1 therapy naive patient with CD74-ROS1+ NSCLC, who ultimately did not respond to a ROS1 inhibitor. We evaluated a panel of ROS1+ patient-derived NSCLC cell lines and used cell-based assays to determine the mechanism of intrinsic resistance to ROS1 therapy.

Results

The CUTO33 cell line expressed the CD74-ROS1 gene fusion at the RNA and protein level. The ROS1 fusion protein was phosphorylated at baseline consistent with the known intrinsic activity of this oncogene. ROS1 phosphorylation could be inhibited using a wide array of ROS1 inhibitors, however these inhibitors did not block cell proliferation, confirming intrinsic resistance in this model and consistent with the patient's lack of response to a ROS1 inhibitor. CUTO33 expressed high levels of AXL, which has been associated with drug resistance. Combination of an AXL inhibitor or AXL knockdown with a ROS1 inhibitor partially reversed resistance. Conclusions: In summary, we demonstrate that AXL overexpression is a mechanism of intrinsic resistance to ROS1 inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。