CircFndc3b Mediates Exercise-Induced Neuroprotection by Mitigating Microglial/Macrophage Pyroptosis via the ENO1/KLF2 Axis in Stroke Mice

CircFndc3b 通过 ENO1/KLF2 轴减轻中风小鼠的小胶质细胞/巨噬细胞焦亡,介导运动诱导的神经保护

阅读:5
作者:Yun Zhao, Xiaofei He, Xiaofeng Yang, Zhongqiu Hong, Yin Xu, Jinghui Xu, Haiqing Zheng, Liying Zhang, Zejie Zuo, Xiquan Hu

Abstract

Circular RNA (circRNA) plays a pivotal role in regulating neurological damage post-ischemic stroke. Previous researches demonstrated that exercise mitigates neurological dysfunction after ischemic stroke, yet the specific contributions of circRNAs to exercise-induced neuroprotection remain unclear. This study reveals that mmu_circ_0001113 (circFndc3b) is markedly downregulated in the penumbral cortex of a mouse model subjected to middle cerebral artery occlusion (MCAO). However, exercise increased circFndc3b expression in microglia/macrophages, alleviating pyroptosis, reducing infarct volume, and enhancing neurological recovery in MCAO mice. Mechanistically, circFndc3b interacted with Enolase 1 (ENO1), facilitating ENO1's binding to the 3' Untranslated Region (3'UTR) of Krüppel-like Factor 2 (Klf2) mRNA, thereby stabilizing Klf2 mRNA and increasing its protein expression, which suppressed NOD-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome-mediated microglial/macrophage pyroptosis. Additionally, circFndc3b enhanced ENO1's interaction with the 3'UTR of Fused in Sarcoma (FUS) mRNA, leading to increased FUS protein levels and promoting circFndc3b cyclization. These results suggest that circFndc3b mediates exercise-induced anti-pyroptotic effects via the ENO1/Klf2 axis, and a circFndc3b/ENO1/FUS positive feedback loop may potentiate exercise's neuroprotective effects. This study unveils a novel mechanism underlying exercise-induced neuroprotection in ischemic stroke and positions circFndc3b as a promising therapeutic target for stroke management, mimicking the beneficial effects of exercise.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。