Role of CYP eicosanoids in the regulation of pharyngeal pumping and food uptake in Caenorhabditis elegans

CYP 二十烷酸在调节秀丽隐杆线虫咽部泵送和食物摄取中的作用

阅读:6
作者:Yiwen Zhou, John R Falck, Michael Rothe, Wolf-Hagen Schunck, Ralph Menzel

Abstract

Cytochrome P450 (CYP)-dependent eicosanoids comprise epoxy- and hydroxy-metabolites of long-chain PUFAs (LC-PUFAs). In mammals, CYP eicosanoids contribute to the regulation of cardiovascular and renal function. Caenorhabditis elegans produces a large set of CYP eicosanoids; however, their role in worm's physiology is widely unknown. Mutant strains deficient in LC-PUFA/eicosanoid biosynthesis displayed reduced pharyngeal pumping frequencies. This impairment was rescued by long-term eicosapentaenoic and/or arachidonic acid supplementation, but not with a nonmetabolizable LC-PUFA analog. Short-term treatment with 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the most abundant CYP eicosanoid in C. elegans, was as effective as long-term LC-PUFA supplementation in the mutant strains. In contrast, 20-HETE caused decreased pumping frequencies. The opposite effects of 17,18-EEQ and 20-HETE were mirrored by the actions of neurohormones. 17,18-EEQ mimicked the stimulating effect of serotonin when added to starved worms, whereas 20-HETE shared the inhibitory effect of octopamine in the presence of abundant food. In wild-type worms, serotonin increased free 17,18-EEQ levels, whereas octopamine selectively induced the synthesis of hydroxy-metabolites. These results suggest that CYP eicosanoids may serve as second messengers in the regulation of pharyngeal pumping and food uptake in C. elegans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。