WSCNet: Biomedical Image Recognition for Cell Encapsulated Microfluidic Droplets

WSCNet:细胞封装微流体液滴的生物医学图像识别

阅读:4
作者:Xiao Zhou, Yuanhang Mao, Miao Gu, Zhen Cheng

Abstract

Microfluidic droplets accommodating a single cell as independent microreactors are frequently demanded for single-cell analysis of phenotype and genotype. However, challenges exist in identifying and reducing the covalence probability (following Poisson's distribution) of more than two cells encapsulated in one droplet. It is of great significance to monitor and control the quantity of encapsulated content inside each droplet. We demonstrated a microfluidic system embedded with a weakly supervised cell counting network (WSCNet) to generate microfluidic droplets, evaluate their quality, and further recognize the locations of encapsulated cells. Here, we systematically verified our approach using encapsulated droplets from three different microfluidic structures. Quantitative experimental results showed that our approach can not only distinguish droplet encapsulations (F1 score > 0.88) but also locate each cell without any supervised location information (accuracy > 89%). The probability of a "single cell in one droplet" encapsulation is systematically verified under different parameters, which shows good agreement with the distribution of the passive method (Residual Sum of Squares, RSS < 0.5). This study offers a comprehensive platform for the quantitative assessment of encapsulated microfluidic droplets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。