Investigation of Novel Primary and Secondary Pharmacophores and 3-Substitution in the Linking Chain of a Series of Highly Selective and Bitopic Dopamine D3 Receptor Antagonists and Partial Agonists

研究一系列高选择性和双位多巴胺 D3 受体拮抗剂和部分激动剂的连接链中的新型一级和二级药效团和 3-取代

阅读:6
作者:Anver Basha Shaik, Vivek Kumar, Alessandro Bonifazi, Adrian M Guerrero, Sophie L Cemaj, Alexandra Gadiano, Jenny Lam, Zheng-Xiong Xi, Rana Rais, Barbara S Slusher, Amy Hauck Newman

Abstract

Dopamine D3 receptors (D3R) play a critical role in neuropsychiatric conditions including substance use disorders (SUD). Recently, we reported a series of N-(3-hydroxy-4-(4-phenylpiperazin-1-yl)butyl)-1H-indole-2-carboxamide analogues as high affinity and selective D3R lead molecules for the treatment of opioid use disorders (OUD). Further optimization led to a series of analogues that replaced the 3-OH with a 3-F in the linker between the primary pharmacophore (PP) and secondary pharmacophore (SP). Among the 3-F-compounds, 9b demonstrated the highest D3R binding affinity (Ki = 0.756 nM) and was 327-fold selective for D3R over D2R. In addition, modification of the PP or SP with a 3,4-(methylenedioxy)phenyl group was also examined. Further, an enantioselective synthesis as well as chiral HPLC methods were developed to give enantiopure R- and S-enantiomers of the four lead compounds. Off-target binding affinities, functional efficacies, and metabolic profiles revealed critical structural components for D3R selectivity as well as drug-like features required for development as pharmacotherapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。