AutoComet: A fully automated algorithm to quickly and accurately analyze comet assays

AutoComet:一种全自动算法,可快速准确地分析彗星分析

阅读:5
作者:Lise Barbé, Stephanie Lam, Austin Holub, Zohreh Faghihmonzavi, Minnie Deng, Rajshri Iyer, Steven Finkbeiner

Abstract

DNA damage is a common cellular feature seen in cancer and neurodegenerative disease, but fast and accurate methods for quantifying DNA damage are lacking. Comet assays are a biochemical tool to measure DNA damage based on the migration of broken DNA strands towards a positive electrode, which creates a quantifiable 'tail' behind the cell. However, a major limitation of this approach is the time needed for analysis of comets in the images with available open-source algorithms. The requirement for manual curation and the laborious pre- and post-processing steps can take hours to days. To overcome these limitations, we developed AutoComet, a new open-source algorithm for comet analysis that utilizes automated comet segmentation and quantification of tail parameters. AutoComet first segments and filters comets based on size and intensity and then filters out comets without a well-connected head and tail, which significantly increases segmentation accuracy. Because AutoComet is fully automated, it minimizes curator bias and is scalable, decreasing analysis time over ten-fold, to less than 3 s per comet. AutoComet successfully detected statistically significant differences in tail parameters between cells with and without induced DNA damage, and was more comparable to the results of manual curation than other open-source software analysis programs. We conclude that the AutoComet algorithm provides a fast, unbiased and accurate method to quantify DNA damage that avoids the inherent limitations of manual curation and will significantly improve the ability to detect DNA damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。