Bioprinted Schwann and Mesenchymal Stem Cell Co-Cultures for Enhanced Spatial Control of Neurite Outgrowth

生物打印雪旺细胞和间充质干细胞共培养可增强神经突生长的空间控制

阅读:4
作者:Enateri V Alakpa, Anton Bahrd, Krister Wiklund, Magnus Andersson, Lev N Novikov, Christina Ljungberg, Peyman Kelk

Abstract

Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel's highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。