Enhanced Tumor-Targeted Delivery of Arginine-Rich Peptides via a Positive Feedback Loop Orchestrated by Piezo1/integrin β1 Signaling Axis

通过 Piezo1/整合素 β1 信号轴调控的正反馈回路增强精氨酸富集肽的肿瘤靶向递送

阅读:8
作者:Minghai Ma, Xing Li, Minxuan Jing, Pu Zhang, Mengzhao Zhang, Lu Wang, Xiao Liang, Yunzhong Jiang, Jianpeng Li, Jiale He, Xinyang Wang, Min Lin, Lei Wang, Jinhai Fan

Abstract

Peptide-based drugs hold great potential for cancer treatment, and their effectiveness is driven by mechanisms on how peptides target cancer cells and escape from potential lysosomal entrapment post-endocytosis. Yet, the mechanisms remain elusive, which hinder the design of peptide-based drugs. Here hendeca-arginine peptides (R11) are synthesized for targeted delivery in bladder carcinoma (BC), investigated the targeting efficiency and elucidated the mechanism of peptide-based delivery, with the aim of refining the design and efficacy of peptide-based therapeutics. It is demonstrated that the over-activated Piezo1/integrin β1 (ITGB1) signaling axis significantly facilitates tumor-targeted delivery of R11 peptides via macropinocytosis. Furthermore, R11 peptides formed hydrogen bonds with integrin β1, facilitating targeting and penetration into tumor cells. Additionally, R11 peptides protected integrin β1 from lysosome degradation, promoting its recycling from cytoplasm to membrane. Moreover, this findings establish a positive feedback loop wherein R11 peptides activate Piezo1 by increasing membrane fusion, promoting Ca2+ releasing and resulting in enhanced integrin β1-mediated endocytosis in both orthotopic models and clinical tissues, demonstrating effective tumor-targeted delivery. Eventually, the Piezo1/integrin β1 signaling axis promoted cellular uptake and transport of peptides, establishing a positive feedback loop, promoting mechanical delivery to cancer and offering possibilities for drug modification in cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。