Selective innervation of NK1 receptor-lacking lamina I spinoparabrachial neurons by presumed nonpeptidergic Aδ nociceptors in the rat

推测的非肽能 Aδ 伤害感受器对大鼠 NK1 受体缺乏的 I 层脊髓旁臂神经元进行选择性支配

阅读:4
作者:Najma Baseer, Abdullah S Al-Baloushi, Masahiko Watanabe, Safa A S Shehab, Andrew J Todd

Abstract

Fine myelinated (Aδ) nociceptors are responsible for fast, well-localised pain, but relatively little is known about their postsynaptic targets in the spinal cord, and therefore about their roles in the neuronal circuits that process nociceptive information. Here we show that transganglionically transported cholera toxin B subunit (CTb) labels a distinct set of afferents in lamina I that are likely to correspond to Aδ nociceptors, and that most of these lack neuropeptides. The vast majority of lamina I projection neurons can be retrogradely labelled from the lateral parabrachial area, and these can be divided into 2 major groups based on expression of the neurokinin 1 receptor (NK1r). We show that CTb-labelled afferents form contacts on 43% of the spinoparabrachial lamina I neurons that lack the NK1r, but on a significantly smaller proportion (26%) of those that express the receptor. We also confirm with electron microscopy that these contacts are associated with synapses. Among the spinoparabrachial neurons that received contacts from CTb-labelled axons, contact density was considerably higher on NK1r-lacking cells than on those with the NK1r. By comparing the density of CTb contacts with those from other types of glutamatergic bouton, we estimate that nonpeptidergic Aδ nociceptors may provide over half of the excitatory synapses on some NK1r-lacking spinoparabrachial cells. These results provide further evidence that synaptic inputs to dorsal horn projection neurons are organised in a specific way. Taken together with previous studies, they suggest that both NK1r(+) and NK1r-lacking lamina I projection neurons are directly innervated by Aδ nociceptive afferents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。