Selective induction of cancer cell death by VDAC1-based peptides and their potential use in cancer therapy

VDAC1 肽选择性诱导癌细胞死亡及其在癌症治疗中的潜在用途

阅读:6
作者:Anna Shteinfer-Kuzmine, Zohar Amsalem, Tasleem Arif, Alexandra Zooravlov, Varda Shoshan-Barmatz

Abstract

Mitochondrial VDAC1 mediates cross talk between the mitochondria and other parts of the cell by transporting anions, cations, ATP, Ca2+ , and metabolites and serves as a key player in apoptosis. As such, VDAC1 is involved in two important hallmarks of cancer development, namely energy and metabolic reprograming and apoptotic cell death evasion. We previously developed cell-penetrating VDAC1-derived peptides that interact with hexokinase (HK), Bcl-2, and Bcl-xL to prevent the anti-apoptotic activities of these proteins and induce cancer cell death, with a focus on leukemia and glioblastoma. In this study, we demonstrated the sensitivity of a panel of genetically characterized cancer cell lines, differing in origin and carried mutations, to VDAC1-based peptide-induced apoptosis. Noncancerous cell lines were less affected by the peptides. Furthermore, we constructed additional VDAC1-based peptides with the aim of improving targeting, selectivity, and cellular stability, including R-Tf-D-LP4, containing the transferrin receptor internalization sequence (Tf) that allows targeting of the peptide to cancer cells, known to overexpress the transferrin receptor. The mode of action of the VDAC1-based peptides involves HK detachment, interfering with the action of anti-apoptotic proteins, and thus activating multiple routes leading to an impairment of cell energy and metabolism homeostasis and the induction of apoptosis. Finally, in xenograft glioblastoma, lung, and breast cancer mouse models, R-Tf-D-LP4 inhibited tumor growth while inducing massive cancer cell death, including of cancer stem cells. Thus, VDAC1-based peptides offer an innovative new conceptual framework for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。