Screening and identification of SipC-interacting proteins in Salmonella enteritidis using Gal4 yeast two-hybrid system in duck

利用Gal4酵母双杂交系统筛选及鉴定鸭肠炎沙门氏菌SipC相互作用蛋白

阅读:5
作者:Yu Zhang, Tiantian Gu, Yang Chen, Guoqiang Zhu, Wanwipa Vongsangnak, Qi Xu, Guohong Chen

Abstract

The zoonotic pathogen Salmonella not only reduces the production performance in ducks, but also poses a serious threat to human health through eggs and pollutes water bodies through feces. SipC, an effector protein of type III secretion systems (T3SS) in Salmonella, mediates translocation of effectors into the eukaryotic host. However, the precise role of SipC effectors remains unknown in ducks. In this study, the SipC from duck granulosa cells (dGCs) was selected as bait, and the SipC-interacting proteins in Salmonella enteritidis (SE) were screened using Gal4 yeast two-hybrid system in duck. Twelve SipC-interacting proteins were identified. Among those, the p53-effector related to PMP-22 (PERP) and TGF-β activated kinase 1-binding protein 2 (TAB2) were selected to further confirm the function by GST pull-down in vitro. Over-expression of PERP resulted in not only increasing SE adhesion and invasion but also triggering the production of IL-1β and IFN-α in SE infected dGCs, while knock-down PERP showed the opposite tendency (P < 0.01). In addition, TAB2 significantly induced the production of IL-6, IL-1β, IFN-α, and INF-γ in SE infected dGCs (P < 0.05), but did not cause obvious changes in SE adhesion and invasion. When the sipC in SE was deleted, the activities of duck PERP and TAB2 were abolished because they could not bind to SipC. Taken together, although the protein of PERP and TAB2 can interact with SipC, their mechanisms were different in duck challenged by SE. Therefore, PERP was involved in SE invasion and inflammatory response of dGC ovaries, and TAB2 only contributed to dGCs inflammatory response, which provided critical insights about the mechanism in host- bacterium protein interactions during Salmonella invasion in duck.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。