Ionic and cellular mechanisms underlying the development of acquired Brugada syndrome in patients treated with antidepressants

接受抗抑郁药治疗的患者罹患获得性布鲁格达综合征的离子和细胞机制

阅读:9
作者:Yoshino Minoura, José M Di Diego, Hector Barajas-Martínez, Andrew C Zygmunt, Dan Hu, Serge Sicouri, Charles Antzelevitch

Conclusions

Our data suggest that amitriptyline-induced inhibition of I(Na) unmasks the Brugada ECG phenotype and facilitates development of an arrhythmogenic substrate only in the setting of a genetic predisposition by creating repolarization heterogeneities that give rise to phase 2 reentry and VT.

Results

Action potentials (AP) were simultaneously recorded from epicardial and endocardial sites of isolated coronary-perfused canine right ventricular wedge preparations, together with a transmural pseudo-ECG. Amitriptyline alone (0.2 μM-1 mM) failed to induce a BrS phenotype. NS5806 (8 μM), a transient outward potassium channel current (I(to) ) agonist, was used to produce an outward shift of current mimicking a genetic predisposition to BrS. In the presence of NS5806, a therapeutic concentration of amitriptyline (0.2 μM) accentuated the epicardial AP notch leading to ST-segment elevation of the ECG. All-or-none repolarization at some epicardial sites but not others gave rise to phase-2-reentry and polymorphic ventricular tachycardia (VT) in 6 of 9 preparations. Isoproterenol (100 nM) or quinidine (10 μM) reversed the effects of amitriptyline aborting phase 2 reentry and VT (4/4). Using voltage-clamp techniques applied to isolated canine ventricular myocytes, 0.2 μM amitriptyline was shown to produce use-dependent inhibition of sodium channel current (I(Na) ), without significantly affecting I(to) (n = 5). Conclusions: Our data suggest that amitriptyline-induced inhibition of I(Na) unmasks the Brugada ECG phenotype and facilitates development of an arrhythmogenic substrate only in the setting of a genetic predisposition by creating repolarization heterogeneities that give rise to phase 2 reentry and VT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。