Chronic pulmonary LPS tolerance induces selective immunosuppression while maintaining the neutrophilic response

慢性肺 LPS 耐受性诱导选择性免疫抑制,同时维持中性粒细胞反应

阅读:6
作者:Sudha Natarajan, Jiyoun Kim, Daniel G Remick

Abstract

LPS challenge causes potent activation of innate immunity. Because LPS is ubiquitously present in ambient air, repeated inhalation may lead to activation of the pulmonary immune response. If this activation is unregulated, chronic LPS inhalation would lead to persistent inflammation and organ damage. We hypothesized that the lung uses the mechanism of LPS tolerance to maintain the balance between hypoinflammatory and hyperinflammatory states. We developed a model of chronic pulmonary LPS tolerance induced by pulmonary exposure to 1 microg LPS for 4 consecutive days. Mice were challenged with 10 microg of LPS 24 h later. TNF-alpha protein was significantly decreased in the bronchoalveolar lavage fluid of tolerant versus nontolerant mice, whereas IL-6 levels were significantly increased in the tolerant group. Tolerant mice were also protected from airway hyperresponsiveness. M2 and M3 muscarinic receptor mRNA was significantly decreased in the lungs of tolerant mice, suggesting a mechanism for the decreased airway hyperresponsiveness. CXCL2 was significantly reduced in tolerant mice, but CXCL1 was equivalent between groups. No difference was seen in neutrophil recruitment to the alveolar space. Interestingly, LPS tolerance does not confer cross-tolerance to the Toll-like receptor (TLR) 2 stimulus Pam3Cys. TNF-alpha and IL-6 concentrations were significantly increased in LPS-tolerant mice challenged with Pam3Cys; however, chemokine concentrations were unaffected. Our data show that repeated LPS inhalation results in differential regulation of cytokines but does not inhibit neutrophil recruitment. This unrestricted neutrophil recruitment may represent a mechanism by which individuals may be protected from pulmonary bacterial infection and pneumonia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。