Electroosmotic flow in nanofluidic channels

纳米流体通道中的电渗流

阅读:6
作者:Daniel G Haywood, Zachary D Harms, Stephen C Jacobson

Abstract

We report the measurement of electroosmotic mobilities in nanofluidic channels with rectangular cross sections and compare our results with theory. Nanofluidic channels were milled directly into borosilicate glass between two closely spaced microchannels with a focused ion beam instrument, and the nanochannels had half-depths (h) of 27, 54, and 108 nm and the same half-width of 265 nm. We measured electroosmotic mobilities in NaCl solutions from 0.1 to 500 mM that have Debye lengths (κ(-1)) from 30 to 0.4 nm, respectively. The experimental electroosmotic mobilities compare quantitatively to mobilities calculated from a nonlinear solution of the Poisson-Boltzmann equation for channels with a parallel-plate geometry. For the calculations, ζ-potentials measured in a microchannel with a half-depth of 2.5 μm are used and range from -6 to -73 mV for 500 to 0.1 mM NaCl, respectively. For κh > 50, the Smoluchowski equation accurately predicts electroosmotic mobilities in the nanochannels. However, for κh < 10, the electrical double layer extends into the nanochannels, and due to confinement within the channels, the average electroosmotic mobilities decrease. At κh ≈ 4, the electroosmotic mobilities in the 27, 54, and 108 nm channels exhibit maxima, and at 0.1 mM NaCl, the electroosmotic mobility in the 27 nm channel (κh = 1) is 5-fold lower than the electroosmotic mobility in the 2.5 μm channel (κh = 100).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。