Metabolism of arachidonic acid by the cytochrome P450 enzyme in patients with chronic Keshan disease and dilated cardiomyopathy

慢性克山病和扩张型心肌病患者细胞色素P450酶对花生四烯酸的代谢

阅读:6
作者:Bing Zhou, Shulan He, X I Wang, Xiaolong Zhen, Xiaohui Su, Wuhong Tan

Abstract

Keshan disease (KD) is an endemic cardiomyopathy. The etiology of KD is selenium deficiency; however, it is not the only one and there is no effective approach to preventing and curing this disease. The aim of the present study was to explore the differences in the role of arachidonic acid (AA) by the cytochrome P450 enzyme between chronic KD (CKD), dilated cardiomyopathy (DCM) and control patients. Reverse transcription-quantitative polymerase chain reaction was used to detect the CYP1A1 and CYP2C19 gene expression levels in 6 CKD patients, 6 DCM and 6 healthy controls. An enzyme-linked immunosorbent assay kit was applied to detect serum protein expression of CYP1A1 and CYP2C19, AA and epoxyeicosatrienoic acids (EETs), and 20-hydroxyeicosatetraenoic acids (20-HETE) in 67 CKD patients, 28 DCM, and 58 controls. The present results showed that the expression levels of CYP1A1 and CYP2C19 genes were significantly upregulated compared with the control group (P<0.01). The expression level of the CYP1A1 protein in the CKD (49.55±35.11 pg/ml) and DCM (46.68 ±13.01 pg/ml) groups were enhanced compared with the control group (44.33±16.76 pg/ml) (P<0.01). The production of the CYP2C19 protein in the CKD (57.52±28.22 pg/ml) and DCM (56.36±11.26 pg/ml) groups was enhanced compared with the control group (51.43±10.76 pg/ml). The concentrations of AA in the CKD (126.27±47.91 ng/ml) and DCM (133.24±58.67 ng/ml) groups were also significantly increased compared to the control (78.16±23.90 ng/ml) (P<0.001). The concentration of 20-HETE in the CKD (198.34±17.22 ng/ml) and DCM (194.46±20.35 ng/ml) groups were also significantly increased compared to the control (130.10±16.10 ng/ml) (P<0.001). The only difference between CKD and DCM was for the expression of the CYP1A1 gene and protein. The maximum concentration of EETs was in the control group (44.37±6.14 pg/ml), and the other two groups were lower than the control group (P<0.001). These findings indicated that AA-derived CYP450 metabolites may have a critical role in the pathogenesis of KD and DCM. Upregulation of the CYP2C19 gene and frequent protein expression may be a protective compensation reaction, while CYP1A1 may aggravate myocardial injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。