Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition

蓝藻脂氧合酶的晶体结构可能揭示底物获取的新特征

阅读:4
作者:Julia Newie, Alexandra Andreou, Piotr Neumann, Oliver Einsle, Ivo Feussner, Ralf Ficner

Abstract

In eukaryotes, oxidized PUFAs, so-called oxylipins, are vital signaling molecules. The first step in their biosynthesis may be catalyzed by a lipoxygenase (LOX), which forms hydroperoxides by introducing dioxygen into PUFAs. Here we characterized CspLOX1, a phylogenetically distant LOX family member from Cyanothece sp. PCC 8801 and determined its crystal structure. In addition to the classical two domains found in plant, animal, and coral LOXs, we identified an N-terminal helical extension, reminiscent of the long α-helical insertion in Pseudomonas aeruginosa LOX. In liposome flotation studies, this helical extension, rather than the β-barrel domain, was crucial for a membrane binding function. Additionally, CspLOX1 could oxygenate 1,2-diarachidonyl-sn-glycero-3-phosphocholine, suggesting that the enzyme may act directly on membranes and that fatty acids bind to the active site in a tail-first orientation. This binding mode is further supported by the fact that CspLOX1 catalyzed oxygenation at the n-10 position of both linoleic and arachidonic acid, resulting in 9R- and 11R-hydroperoxides, respectively. Together these results reveal unifying structural features of LOXs and their function. While the core of the active site is important for lipoxygenation and thus highly conserved, peripheral domains functioning in membrane and substrate binding are more variable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。