Significantly enhanced osteoblast response to nano-grained pure tantalum

成骨细胞对纳米粒纯钽的反应显著增强

阅读:7
作者:W T Huo, L Z Zhao, S Yu, Z T Yu, P X Zhang, Y S Zhang

Abstract

Tantalum (Ta) metal is receiving increasing interest as biomaterial for load-bearing orthopedic applications and the synthetic properties of Ta can be tailored by altering its grain structures. This study evaluates the capability of sliding friction treatment (SFT) technique to modulate the comprehensive performances of pure Ta. Specifically, novel nanocrystalline (NC) surface with extremely small grains (average grain size of ≤20 nm) was fabricated on conventional coarse-grained (CG) Ta by SFT. It shows that NC surface possessed higher surface hydrophilicity and enhanced corrosion resistance than CG surface. Additionally, the NC surface adsorbed a notably higher percentage of protein as compared to CG surface. The in vitro results indicated that in the initial culture stages (up to 24 h), the NC surface exhibited considerably enhanced osteoblast adherence and spreading, consistent with demonstrated superior hydrophilicity on NC surface. Furthermore, within the 14 days culture period, NC Ta surface exhibited a remarkable enhancement in osteoblast cell proliferation, maturation and mineralization as compared to CG surface. Ultimately, the improved osteoblast functions together with the good mechanical and anti-corrosion properties render the SFT-processed Ta a promising alternative for the load-bearing bone implant applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。