Use of tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: integration of in vitro, pharmacokinetic modeling, and simulation studies

使用 tc-99m 甲溴菲宁作为临床探针评估肝胆转运改变:体外、药代动力学建模和模拟研究的整合

阅读:8
作者:Giulia Ghibellini, Elaine M Leslie, Gary M Pollack, Kim L R Brouwer

Conclusions

MEB may be a useful probe to assess how altered hepatic function at the transport level modulates hepatobiliary drug disposition.

Methods

MEB transport was investigated in Xenopus laevis oocytes expressing OATP1B1 or OATP1B3, and in membrane vesicles prepared from HEK293 cells transfected with MRP2 or MRP3. A pharmacokinetic model was developed based on blood, urine and bile concentration-time profiles obtained in healthy humans, and the effect of changes in hepatic uptake and/or excretion associated with disease states (hyperbilirubinemia and cholestasis) on MEB disposition was simulated.

Purpose

Transport of the hepatobiliary scintigraphy agent Tc-99m mebrofenin (MEB) was characterized and simulation studies were conducted to examine the effects of altered hepatic transport on MEB pharmacokinetics in humans.

Results

MEB (80 pM) transport by OATP1B1 and OATP1B3 was inhibited by rifampicin (50 microM) to 10% and 4% of control, respectively. MEB (0.4 nM) transport by MRP2 was inhibited to 12% of control by MK571 (50 microM); MRP3-mediated transport was inhibited to 5% of control by estradiol-17-beta-glucuronide (100 microM). A two-compartment model described MEB (2.5 mCi) systemic disposition in humans (systemic clearance = 16.2 +/- 2.7 ml min(-1) kg(-1)); biliary excretion was the predominant route of hepatic elimination (efflux rate constants ratio canalicular/sinusoidal = 3.4 +/- 0.8). Based on simulations, altered hepatic transport markedly influenced MEB systemic and hepatic exposure. Conclusions: MEB may be a useful probe to assess how altered hepatic function at the transport level modulates hepatobiliary drug disposition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。