Serum Pharmacochemistry and Network Pharmacology Reveal Active Compounds and Mechanisms of the Huaxian Formula in Alleviating Radiation-Induced Pulmonary Fibrosis

血清药理化学和网络药理学揭示化纤方减轻放射性肺纤维化的有效成分和机制

阅读:9
作者:CuiCui Gong, Junyang Chen, Pingjin Zou, Zengyi Fang, Li Quan, Jing Wang, Jie Yin, Bing Lin, Jinyi Lang, Meihua Chen

Conclusion

Our research results indicate that HXF may exert its effects on the prevention and treatment of radiation-induced pulmonary fibrosis (RIPF) through multiple pathways and targets, with the PI3K-Akt signaling pathway likely playing the most crucial role in this process.

Methods

Through serum pharmacochemistry, network pharmacology, molecular docking, and experimental validation, we investigate the potential mechanisms of HXF in the prevention and treatment of radiation-induced pulmonary fibrosis (RIPF).

Purpose

Radiation-induced pulmonary fibrosis (RIPF) is a serious complication of radiotherapy that lacks effective treatment options. The Huaxian formula (HXF), a traditional Chinese herbal remedy, shows promise in alleviating RIPF; however, its active ingredients and underlying mechanisms remain poorly understood.

Results

Histological examination and non-invasive computed tomography (CT) scans in animal experiments revealed that HXF improved extracellular matrix collagen deposition in the lung tissue of irradiated mice and reduced fibrosis manifestations on CT images. Analysis of post-HXF administration serum samples identified 21 enriched compounds as potential active compounds, with 430 corresponding prospective targets. Overlapping these compounds with 991 RIPF-related genes yielded 127 genes primarily associated with the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and the MAPK signaling pathway. Molecular docking indicated that key compounds in HXF serum, 5,7,8-trimethoxyflavone, and hyperoside, exhibited strong affinity with key targets. Finally, animal experiments confirmed that HXF significantly inhibited the expression of p-Akt and p-PI3K proteins in the lung tissue of irradiated mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。