Anti- c-myc cholesterol based lipoplexes as onco-nanotherapeutic agents in vitro

抗 c-myc 胆固醇脂质复合物作为体外肿瘤纳米治疗剂

阅读:7
作者:Saffiya Habib, Aliscia Daniels, Mario Ariatti, Moganavelli Singh

Background

Strategies aimed at inhibiting the expression of the c-myc oncogene could provide the basis for alternative cancer treatment. In this regard, silencing c-myc expression using small interfering RNA (siRNA) is an attractive option. However, the development of a clinically viable, siRNA-based, c-myc silencing system is largely dependent upon the design of an appropriate siRNA carrier that can be easily prepared. Nanostructures formed by the electrostatic association of siRNA and cationic lipid vesicles represent uncomplicated siRNA delivery systems.

Conclusion

This anti- c-myc MS09:Chol lipoplex exemplifies a simple anticancer agent with enhanced c-myc gene silencing potential in vitro.

Methods

This study has focused on cationic liposomes prepared with equimolar quantities of the cytofectin, N,N-dimethylaminopropylamido-succinylcholesteryl-formylhydrazide (MS09), and cholesterol (Chol) for the development of a simple, but effective anti- c-myc onco-nanotherapeutic agent. Liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) in place of Chol as the co-lipid were included for comparative purposes.

Results

Liposomes successfully bound siRNA forming lipoplexes of less than 150 nm in size, which assumed bilamellar aggregrates. The liposome formulations were well tolerated in the human breast adenocarcinoma (MCF-7) and colon carcinoma (HT-29) cells, which overexpress c-myc. Lipoplexes directed against the c-myc transcript mediated a dramatic reduction in c-myc mRNA and protein levels. Moreover, oncogene knockdown and anti-cancer effects were superior to that of Lipofectamine™ 3000.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。