Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice

Tg2576 小鼠脑血管内皮型一氧化氮合酶解偶联

阅读:5
作者:Anantha Vijay R Santhanam, Livius V d'Uscio, Tongrong He, Pritam Das, Steven G Younkin, Zvonimir S Katusic

Abstract

In this study, we tested the hypothesis that reduced bioavailability of tetrahydrobiopterin (BH4) is a major mechanism responsible for pathogenesis of endothelial dysfunction in cerebral microvessels of transgenic mice expressing the Swedish double mutation of human amyloid precursor protein (APP) (Tg2576 mice). Endothelial nitric oxide synthase (eNOS) protein expression was significantly increased in cerebral vasculature of Tg2576 mice. In contrast, bioavailability of BH4 was significantly reduced (p < 0.05). Moreover, superoxide anion production was increased in cerebral microvessels of Tg2576 mice (p < 0.05). Incubation with NOS inhibitor, Nω-nitro-L-arginine methyl ester, decreased superoxide anion indicating that uncoupled eNOS is most likely the source of superoxide anion. Increasing BH4 bioavailability either exogenously by BH4 supplementation or endogenously by treatment with the selective peroxisome proliferator-activated receptor--delta activator GW501516 (2 mg/kg/day, 14 days) attenuated eNOS uncoupling and decreased superoxide anion production in cerebral microvessels of Tg2576 mice (p < 0.05). Treatment with GW501516 restored the biological activity of endothelial nitric oxide in cerebral microvessels of Tg2576 mice, as indicated by the increased nitrite/nitrate content and 3,5-cyclic guanosine monophosphate levels (p < 0.05). Our studies indicate that sub-optimal BH4 bioavailability in cerebral vasculature is an important contributor to oxidant stress and endothelial dysfunction in Tg2576 mouse model of Alzheimer's disease. Existing evidence suggests that Aβ peptides-induced up-regulation of expression and activity of NADPH oxidase causes increased production of superoxide anion (.O2(-)). .O2(-) can also be converted to hydrogen peroxide (H2O2) by enzymatic activity of superoxide dismutase (SOD) or spontaneous dismutation. Elevation of .O2(-) and H2O2 might cause oxidation of tetrahydrobiopterin (BH4) to dihydrobiopterin (BH2) and subsequent uncoupling of endothelial nitric oxide synthase (eNOS) (a) thus reducing levels of nitric oxide (NO) and 3',5'-cyclic guanosine monophosphate (cGMP). Supplementation of BH4 or activation of PPARδ prevents detrimental effects of eNOS uncoupling by restoring bioavailability of BH4 and scavenging of .O2(-), respectively (b). Activation of PPARδ also increases expression of catalase thereby inactivating H2O2. Generation of H2O2 by uncoupled eNOS in cerebral microvessels of Tg2576 mice is hypothetical.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。