FOXM1/DVL2/Snail axis drives metastasis and chemoresistance of colorectal cancer

FOXM1/DVL2/Snail 轴驱动结直肠癌的转移和化学耐药性

阅读:5
作者:Yuhan Yang, Hequn Jiang, Wanxin Li, Linyi Chen, Wanglong Zhu, Yu Xian, Zhengyu Han, Lan Yin, Yao Liu, Yi Wang, Kejian Pan, Kun Zhang

Abstract

Colorectal cancer (CRC) is the third most common type of cancer worldwide. Metastasis and chemoresistance are regarded as the two leading causes of treatment failure and high mortality in CRC. Forkhead Box M1 (FOXM1) has been involved in malignant behaviors of cancer. However, the role and mechanism of FOXM1 in simultaneously regulating metastasis and chemoresistance of CRC remain poorly understood. Here, we found that FOXM1 was overexpressed in oxaliplatin- and vincristine-resistant CRC cells (HCT-8/L-OHP and HCT-8/VCR) with enhanced metastatic potential, compared with HCT-8 cells. FOXM1 overexpression increased migration, invasion and drug-resistance to oxaliplatin and vincristine in HCT-8 cells, while FOXM1 knockdown using shFOXM1 impaired metastasis and drug-resistance in HCT-8/L-OHP and HCT-8/VCR cells. Moreover, FOXM1 up-regulated Snail to trigger epithelial-mesenchymal transition-like molecular changes and multidrug-resistance protein P-gp expression, while silencing Snail inhibited FOXM1-induced metastasis and drug-resistance. We further identified that disheveled-2 (DVL2) was crucial for FOXM1-induced Snail expression, metastasis and chemoresistance. Furthermore, FOXM1 bound to DVL2, and enhanced nuclear translocation of DVL2 and DVL2-mediated transcriptional activity of Wnt/β-catenin known to induce Snail expression. In conclusion, FOXM1/DVL2/Snail axis triggered aggressiveness of CRC. Blocking FOXM1/DVL2/Snail pathway simultaneously inhibited metastasis and chemoresistance in CRC cells, providing a new strategy for successful CRC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。