Dexamethasone acts as a radiosensitizer in three astrocytoma cell lines via oxidative stress

地塞米松通过氧化应激在三种星形细胞瘤细胞系中充当放射增敏剂

阅读:7
作者:Sylvia Ortega-Martínez

Abstract

Glucocorticoids (GCs), which act on stress pathways, are well-established in the co-treatment of different kinds of tumors; however, the underlying mechanisms by which GCs act are not yet well elucidated. As such, this work investigates the role of glucocorticoids, specifically dexamethasone (DEXA), in the processes referred to as DNA damage and DNA damage response (DDR), establishing a new approach in three astrocytomas cell lines (CT2A, APP.PS1 L.1 and APP.PS1 L.3). The results show that DEXA administration increased the basal levels of gamma-H2AX foci, keeping them higher 4h after irradiation (IR) of the cells, compared to untreated cells. This means that DEXA might cause increased radiosensitivity in these cell lines. On the other hand, DEXA did not have an apparent effect on the formation and disappearance of the 53BP1 foci. Furthermore, it was found that DEXA administered 2h before IR led to a radical change in DNA repair kinetics, even DEXA does not affect cell cycle. It is important to highlight that DEXA produced cell death in these cell lines compared to untreated cells. Finally and most important, the high levels of gamma-H2AX could be reversed by administration of ascorbic acid, a potent blocker of reactive oxygen species, suggesting that DEXA acts by causing DNA damage via oxidative stress. These exiting findings suggest that DEXA might promote radiosensitivity in brain tumors, specifically in astrocytoma-like tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。