Transcriptome Based Profiling of the Immune Cell Gene Signature in Rat Experimental Colitis and Human IBD Tissue Samples

基于转录组的大鼠实验性结肠炎和人类 IBD 组织样本中免疫细胞基因特征的分析

阅读:6
作者:Éva Boros, Bence Prontvai, Zoltán Kellermayer, Péter Balogh, Patrícia Sarlós, Áron Vincze, Csaba Varga, Zoltán Maróti, Balázs Bálint, István Nagy

Abstract

Chronic intestinal inflammation is characteristic of Inflammatory Bowel Disease (IBD) that is associated with the exaggerated infiltration of immune cells. A complex interplay of inflammatory mediators and different cell types in the colon are responsible for the maintenance of tissue homeostasis and affect pathological conditions. Gene expression alteration of colon biopsies from IBD patients and an in vivo rat model of colitis were examined by RNA-Seq and QPCR, while we used in silico methods, such as Ingenuity Pathway Analysis (IPA) application and the Immune Gene Signature (ImSig) package of R, to interpret whole transcriptome data and estimate immune cell composition of colon tissues. Transcriptome profiling of in vivo colitis model revealed the most significant activation of signaling pathways responsible for leukocyte recruitment and diapedesis. We observed significant alteration of genes related to glycosylation or sensing of danger signals and pro- and anti-inflammatory cytokines and chemokines, as well as adhesion molecules. We observed the elevated expression of genes that implies the accumulation of monocytes, macrophages, neutrophils and B cells in the inflamed colon tissue. In contrast, the rate of T-cells slightly decreased in the inflamed regions. Interestingly, natural killer and plasma cells do not show enrichment upon colon inflammation. In general, whole transcriptome analysis of the in vivo experimental model of colitis with subsequent bioinformatics analysis provided a better understanding of the dynamic changes in the colon tissue of IBD patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。