Altered placental development in undernourished rats: role of maternal glucocorticoids

营养不良大鼠胎盘发育改变:母体糖皮质激素的作用

阅读:5
作者:Louiza Belkacemi, Andrea Jelks, Chun-Hung Chen, Michael G Ross, Mina Desai

Abstract

Maternal undernutrition (MUN) during pregnancy may lead to fetal intrauterine growth restriction (IUGR), which itself predisposes to adult risk of obesity, hypertension, and diabetes. IUGR may stem from insufficient maternal nutrient supply or reduced placental nutrient transfer. In addition, a critical role for maternal stress-induced glucocorticoids (GCs) has been suggested to contribute to both IUGR and the ensuing risk of adult metabolic syndrome. While GC-induced fetal organ defects have been examined, there have been few studies on placental responses to MUN-induced maternal stress. Therefore, we hypothesize that 50% MUN associates with increased maternal GC levels and decreased placental HSD11B. This in turn leads to decreased placental and fetal growth, hence the need to investigate nutrient transporters. We measured maternal serum levels of corticosterone, and the placental basal and labyrinth zone expression of glucocorticoid receptor (NR3C1), 11-hydroxysteroid dehydrogenase B 1 (HSD11B-1) predominantly activates cortisone to cortisol and 11-dehydrocorticosterone (11-DHC) to corticosterone, although can sometimes drive the opposing (inactivating reaction), and HSD11B-2 (only inactivates and converts corticosterone to 11-DHC in rodents) in control and MUN rats at embryonic day 20 (E20). Moreover, we evaluated the expression of nutrient transporters for glucose (SLC2A1, SLC2A3) and amino acids (SLC38A1, 2, and 4). Our results show that MUN dams displayed significantly increased plasma corticosterone levels compared to control dams. Further, a reduction in fetal and placental weights was observed in both the mid-horn and proximal-horn positions. Notably, the placental labyrinth zone, the site of feto-maternal exchange, showed decreased expression of HSD11B1-2 in both horns, and increased HSD11B-1 in proximal-horn placentas, but no change in NR3C1. The reduced placental GCs catabolic capacity was accompanied by downregulation of SLC2A3, SLC38A1, and SLC38A2 expression, and by increased SLC38A4 expression, in labyrinth zones from the mid- and proximal-horns. In marked contrast to the labyrinth zone, the basal zone, which is the site of hormone production, did not show significant changes in any of these enzymes or transporters. These results suggest that dysregulation of the labyrinth zone GC "barrier", and more importantly decreased nutrient supply resulting from downregulation of some of the amino acid system A transporters, may contribute to suboptimal fetal growth under MUN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。