Biomineralization mediated by anaerobic methane-consuming cell consortia

厌氧甲烷消耗细胞联合体介导的生物矿化

阅读:7
作者:Ying Chen, Yi-Liang Li, Gen-Tao Zhou, Han Li, Yang-Ting Lin, Xiang Xiao, Feng-Ping Wang

Abstract

Anaerobic methanotrophic archaea (ANME) play a significant role in global carbon cycles. These organisms consume more than 90% of ocean-derived methane and influence the landscape of the seafloor by stimulating the formation of carbonates. ANME frequently form cell consortia with sulfate-reducing bacteria (SRB) of the family Deltaproteobacteria. We investigated the mechanistic link between ANME and the natural consortium by examining anaerobic oxidation of methane (AOM) metabolism and the deposition of biogenetic minerals through high-resolution imaging analysis. All of the cell consortia found in a sample of marine sediment were encrusted by a thick siliceous envelope consisting of laminated and cementing substances, whereas carbonate minerals were not found attached to cells. Beside SRB cells, other bacteria (such as Betaproteobacteria) were found to link with the consortia by adhering to the siliceous crusts. Given the properties of siliceous minerals, we hypothesize that ANME cell consortia can interact with other microorganisms and their substrates via their siliceous envelope, and this mechanism of silicon accumulation may serve in clay mineral formation in marine sedimentary environments. A mechanism for biomineralization mediated by AOM consortia was suggested based on the above observations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。