The roles and mechanisms of miR-26 derived from exosomes of adipose-derived stem cells in the formation of carotid atherosclerotic plaque

脂肪干细胞外泌体来源的miR-26在颈动脉粥样硬化斑块形成中的作用及机制

阅读:10
作者:Guochao Han, Hui Li, Hongyan Guo, Chao Yi, Beiguang Yu, Yuan Lin, Bingjie Zheng, Dongruo He

Background

This study explored the serum concentrations of miR-26 in patients with carotid atherosclerosis (CAS) and defined the roles and mechanisms of miR-26 derived from the exosomes of adipose-derived stem cells (ADSC-exos).

Conclusions

miR-26 has an active role in CAS and may be a novel target for the treatment of CAS in the future.

Methods

The carotid artery width was diagnosed by ultrasound examination in patients with different degrees of CAS. The serum levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in patients were detected by biochemistry. The serum levels of miR-26 were determined by quantitative polymerase chain reaction (qPCR). A model of CAS in ApoE-/- mice fed with a rich-fat diet was established to analyze the regulatory effects of serum miR-26 on blood lipids in mice. Adipose mesenchymal stem cell lines transfected with miR-26 were established. The regulatory relationship between the expression levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β, and the expression levels of miR-26 in the supernatant of each group of cells was determined by qPCR. The ADSC-exos were extracted from ADSCs and injected into model mice through the tail vein. The therapeutic effect of ADSCs expressing miR-26 on model mice was evaluated by detecting the levels of inflammatory factors and blood lipids in the serum of the mice.

Results

The degree of atherosclerosis (AS) was positively associated with the intima-media thickness (IMT) of the carotid artery. The serum levels of miR-26 in patients were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C levels. Similarly, in the CAS mouse model, the serum levels of miR-26 were inversely correlated with the levels of blood lipids (TC, TG, and LDL-C), and positively correlated with HDL-C level. In ADSCs transfected with miR-26, the miR-26 expression in the cell supernatant was negatively regulated by the expression of inflammatory factors, TNF-α, IL-6, and IL-1β, in the cell supernatant. ADSC-exos expressing miR-26 has positive effects on correcting blood lipids and inflammatory factors in the mouse model of CAS. Conclusions: miR-26 has an active role in CAS and may be a novel target for the treatment of CAS in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。