Histological Assessment of Systemic Toxicity Induced by Zinc oxide Nanoparticles and the Prophylactic Potency of Ascorbate in Albino Rats

氧化锌纳米粒子引起的全身毒性的组织学评估和抗坏血酸对白化大鼠的预防效力

阅读:14
作者:Amira Osman, Said Mohamed Afify, Amira Frag, Sarah Mohammed Alghandour

Aim

Using histological and immunohistochemical analysis, we attempted to investigate whether ascorbate ("vitamin C") (VC) could protect liver, lung, and spleen tissues from ZnO-NP systemic toxicity. Materials and

Background

Nanoparticles of zinc oxide (ZnO-NPs) are frequently implemented in cosmetics, additives, and electronic devices. Moreover, their applications extend to water treatment, drug delivery, and cancer therapy. As a result, NP toxicity became an essential subject in biosafety research.

Conclusion

Our study revealed that ascorbate (VC) inhibited the systemic toxicity prompted by ZnO-NPs in lung, liver, and spleen tissues, indicating its importance for future treatment with ZnO-NPs.

Methods

Rats were classified as control group, NP group injected intraperitoneally (IP), once by dissolved ZnO-NPs (200 mg/kg), and NP + VC group injected IP, once by dissolved ZnO-NPs (200 mg/kg) and then ingested 100 mg/kg of VC orally. Blood samples were collected. Liver, lung, and spleen specimens were prepared for light, electron microscopic, and immunohistochemical analysis.

Results

In comparison to the control group, the NP group's liver enzyme, i.e. aspartate transaminase and alanine transaminase, values and counts of white blood cells (WBCs) were higher on the 7th day, but their red blood corpuscle (RBC) count, hemoglobin (Hgb) level, platelet count, and albumin values were lower. Histopathological analysis of liver, lung, and spleen tissues showed severe toxicity manifested by cell apoptosis, mononuclear cell infiltration, dilated blood vessels, and hemorrhage. In addition, the NP group showed a significantly higher expression of Ki67 and caspase-3 immunoreactivity. The biochemical, hematological, and histopathological results of the NP + VC group improved overall, reflecting VC's protective effect against systemic toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。