Engineered Exosomes With Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction

针对缺血性心肌靶向肽的工程外泌体可用于心肌梗死的靶向治疗

阅读:9
作者:Xu Wang, Yihuan Chen, Zhenao Zhao, Qingyou Meng, You Yu, Jiacheng Sun, Ziying Yang, Yueqiu Chen, Jingjing Li, Teng Ma, Hanghang Liu, Zhen Li, Junjie Yang, Zhenya Shen

Abstract

Background Exosomes are membranous vesicles generated by almost all cells. Recent studies demonstrated that mesenchymal stem cell-derived exosomes possessed many effects, including antiapoptosis, anti-inflammatory effects, stimulation of angiogenesis, anticardiac remodeling, and recovery of cardiac function on cardiovascular diseases. However, targeting of exosomes to recipient cells precisely in vivo still remains a problem. Ligand fragments or homing peptides discovered by phage display and in vivo biopanning methods fused to the enriched molecules on the external part of exosomes have been exploited to improve the ability of exosomes to target specific tissues or organs carrying cognate receptors. Herein, we briefly elucidated how to improve targeting ability of exosomes to ischemic myocardium. Methods and Results We used technology of molecular cloning and lentivirus packaging to engineer exosomal enriched membrane protein (Lamp2b) fused with ischemic myocardium-targeting peptide CSTSMLKAC (IMTP). In vitro results showed that IMTP-exosomes could be internalized by hypoxia-injured H9C2 cells more efficiently than blank-exosomes. Compared with blank-exosomes, IMTP-exosomes were observed to be increasingly accumulated in ischemic heart area ( P<0.05). Meanwhile, attenuated inflammation and apoptosis, reduced fibrosis, enhanced vasculogenesis, and cardiac function were detected by mesenchymal stem cell-derived IMTP-exosome treatment in ischemic heart area. Conclusions Our research concludes that exosomes engineered by IMTP can specially target ischemic myocardium, and mesenchymal stem cell-derived IMTP-exosomes exert enhanced therapeutic effects on acute myocardial infarction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。