USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway

USP22通过SIRT1/AKT/MRP1信号通路介导肝细胞癌的多药耐药性

阅读:5
作者:Sunbin Ling, Jie Li, Qiaonan Shan, Haojiang Dai, Di Lu, Xue Wen, Penghong Song, Haiyang Xie, Lin Zhou, Jimin Liu, Xiao Xu, Shusen Zheng

Abstract

Drug treatments for hepatocellular carcinoma (HCC) often fail because of multidrug resistance (MDR). The mechanisms of MDR are complex but cancer stem cells (CSCs), which are able to self-renew and differentiate, have recently been shown to be involved. The deubiquitinating enzyme ubiquitin-specific protease 22 (USP22) is a marker for CSCs. This study aimed to elucidate the role of USP22 in MDR of HCC and the underlying mechanisms. Using in vitro and in vivo assays, we found that modified USP22 levels were responsible for the altered drug-resistant phenotype of BEL7402 and BEL/FU cells. Downregulation of USP22 dramatically inhibited the expression of ABCC1 (encoding MRP1) but weakly influenced ABCB1 (encoding P-glycoprotein). Sirtuin 1 (SIRT1) was reported previously as a functional mediator of USP22 that could promote HCC cell proliferation and enhance resistance to chemotherapy. In this study, USP22 directly interacted with SIRT1 and positively regulated SIRT1 protein expression. Regulation of the expression of both USP22 and SIRT1 markedly affected the AKT pathway and MRP1 expression. Inhibition of the AKT pathway by its specific inhibitor LY294002 resulted in downregulation of MRP1. USP22 and MRP1 expression was detected in 168 clinical HCC samples by immunohistochemical staining, and a firm relationship between USP22 and MRP1 was identified. Together, these results indicate that USP22 could promote the MDR in HCC cells by activating the SIRT1/AKT/MRP1 pathway. USP22 might be a potential target, through which the MDR of HCC in clinical setting could be reversed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。