Case Report: A Novel Variant c.2262+3A>T of the SCN5A Gene Results in Intron Retention Associated With Incessant Ventricular Tachycardias

病例报告:SCN5A 基因的新变异 c.2262+3A>T 导致内含子保留与持续性室性心动过速相关

阅读:10
作者:Jie Yin, Jia Zhou, Jinlong Chen, Ting Xu, Zhongman Zhang, Han Zhang, Chang Yuan, Xueying Cheng, Yuming Qin, Bixia Zheng, Chunli Wang, Shiwei Yang, Zhanjun Jia

Conclusion

We verified the pathogenic effect of splicing variant c.2262+3A>T, which disturbed the normal mRNA splicing and caused a truncated protein, suggesting that splice variants play an important role in the molecular basis of early onset incessant ventricular tachycardias, and careful molecular profiling of these patients will be essential for future effective personalized treatment options.

Methods

Gene variations were screened using whole-exome sequencing and validated by direct Sanger sequencing. A minigene assay and reverse transcription PCR (RT-PCR) were performed to confirm the effects of splice variants in vitro. Western blot analysis was carried out to determine whether the c.2262+3A>T variant produced a truncated protein.

Objective

Voltage-gated sodium channel Nav1.5 encoded by the SCN5A gene plays crucial roles in cardiac electrophysiology. Previous genetic studies have shown that mutations in SCN5A are associated with multiple inherited cardiac arrhythmias. Here, we investigated the molecular defect in a Chinese boy with clinical manifestations of arrhythmias.

Results

By genetic analysis, we identified a novel splice variant c.2262+3A>T in SCN5A gene in a Chinese boy with incessant ventricular tachycardias (VT). This variant was predicted to activate a new cryptic splice donor site and was identified by in silico analysis. The variant retained 79 bp at the 5' end of intron 14 in the mature mRNA. Furthermore, the mutant transcript that created a premature stop codon at 818 amino acids [p.(R818*)] could be produced as a truncated protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。