Expanding coverage of the metabolome for global metabolite profiling

扩大代谢组的覆盖范围以实现全球代谢物分析

阅读:7
作者:Oscar Yanes, Ralf Tautenhahn, Gary J Patti, Gary Siuzdak

Abstract

Mass spectrometry-based metabolomics is the comprehensive study of naturally occurring small molecules collectively known as the metabolome. Given the vast structural diversity and chemical properties of endogenous metabolites, biological extraction and chromatography methods bias the number, property, and concentration of metabolites detected by mass spectrometry and creates a challenge for global untargeted studies. In this work, we used Escherichia coli bacterial cells to explore the influence of solvent polarity, temperature, and pH in extracting polar and nonpolar metabolites simultaneously. In addition, we explored chromatographic conditions involving different stationary and mobile phases that optimize the separation and ionization of endogenous metabolite extracts as well as a mixture of synthetic standards. Our results reveal that hot polar solvents are the most efficient in extracting both hydrophilic and hydrophobic metabolites simultaneously. In addition, ammonium fluoride in the mobile phase substantially improved ionization efficiency in negative electrospray ionization mode by an average increase in signal intensity of 5.7 and over a 2-fold increase in the total number of features detected. The improvement in sensitivity with ammonium fluoride resulted in 3.5 times as many metabolite hits in databases compared to ammonium acetate or formic acid enriched mobile phases and allowed for the identification of unique metabolites involved in fundamental cellular pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。