Human Plasma-Derived 3D Cultures Model Breast Cancer Treatment Responses and Predict Clinically Effective Drug Treatment Concentrations

人类血浆衍生的 3D 培养物可模拟乳腺癌治疗反应并预测临床有效的药物治疗浓度

阅读:6
作者:Kristin Calar, Simona Plesselova, Somshuvra Bhattacharya, Megan Jorgensen, Pilar de la Puente

Abstract

Lack of efficacy and a low overall success rate of phase I-II clinical trials are the most common failures when it comes to advancing cancer treatment. Current drug sensitivity screenings present several challenges including differences in cell growth rates, the inconsistent use of drug metrics, and the lack of translatability. Here, we present a patient-derived 3D culture model to overcome these limitations in breast cancer (BCa). The human plasma-derived 3D culture model (HuP3D) utilizes patient plasma as the matrix, where BCa cell lines and primary BCa biopsies were grown and screened for drug treatments. Several drug metrics were evaluated from relative cell count and growth rate curves. Correlations between HuP3D metrics, established preclinical models, and clinical effective concentrations in patients were determined. HuP3D efficiently supported the growth and expansion of BCa cell lines and primary breast cancer tumors as both organoids and single cells. Significant and strong correlations between clinical effective concentrations in patients were found for eight out of ten metrics for HuP3D, while a very poor positive correlation and a moderate correlation was found for 2D models and other 3D models, respectively. HuP3D is a feasible and efficacious platform for supporting the growth and expansion of BCa, allowing high-throughput drug screening and predicting clinically effective therapies better than current preclinical models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。