Regulation of dual oxidase hydrogen peroxide synthesis results in an epithelial respiratory burst

双氧化酶过氧化氢合成的调节导致上皮呼吸爆发

阅读:8
作者:Gregory E Conner

Abstract

Redox status is a central determinant of cellular activities and redox imbalance is correlated with numerous diseases. NADPH oxidase activity results in formation of H2O2, that, in turn, sets cellular redox status, a key regulator of cellular homeostasis and responses to external stimuli. Hydrogen peroxide metabolism regulates cell redox status by driving changes in protein cysteine oxidation often via cycling of thioredoxin/peroxiredoxin and glutathione; however, regulation of enzymes controlling synthesis and utilization of H2O2 is not understood beyond broad outlines. The data presented here show that calcium-stimulated epithelial Duox H2O2 synthesis is transient, independent of intracellular calcium renormalization, H2O2 scavenging by antioxidant enzymes, or substrate depletion. The data support existence of a separate mechanism that restricts epithelial H2O2 synthesis to a burst and prevents harmful changes in redox tone following continuous stimulation. Elucidation of this H2O2 synthesis tempering mechanism is key to understanding cellular redox regulation and control of downstream effectors, and this observation provides a starting point for investigation of the mechanism that controls H2O2-mediated increases in redox tone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。