Inflammatory Responses Reprogram TREGS Through Impairment of Neuropilin-1

炎症反应通过损害神经纤毛蛋白-1 重新编程 TREGS

阅读:6
作者:Tim Hung-Po Chen, Manoj Arra, Gabriel Mbalaviele, Gaurav Swarnkar, Yousef Abu-Amer

Abstract

Chronic inflammatory insults compromise immune cell responses and ultimately contribute to pathologic outcomes. Clinically, it has been suggested that bone debris and implant particles, such as polymethylmethacrylate (PMMA), which are persistently released following implant surgery evoke heightened immune, inflammatory, and osteolytic responses that contribute to implant failure. However, the precise mechanism underlying this pathologic response remains vague. TREGS, the chief immune-suppressive cells, express the transcription factor Foxp3 and are potent inhibitors of osteoclasts. Using an intra-tibial injection model, we show that PMMA particles abrogate the osteoclast suppressive function of TREGS. Mechanistically, PMMA particles induce TREG instability evident by reduced expression of Foxp3. Importantly, intra-tibial injection of PMMA initiates an acute innate immune and inflammatory response, yet the negative impact on TREGS by PMMA remains persistent. We further show that PMMA enhance TH17 response at the expense of other T effector cells (TEFF), particularly TH1. At the molecular level, gene expression analysis showed that PMMA particles negatively regulate Nrp-1/Foxo3a axis to induce TREG instability, to dampen TREG activity and to promote phenotypic switch of TREGS to TH17 cells. Taken together, inflammatory cues and danger signals, such as bone and implant particles exacerbate inflammatory osteolysis in part through reprogramming TREGS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。