Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus

内源性大麻素信号是自愿运动诱导海马祖细胞增殖增强的必要条件

阅读:6
作者:Matthew N Hill, Andrea K Titterness, Anna C Morrish, Erica J Carrier, Tiffany T-Y Lee, Joana Gil-Mohapel, Boris B Gorzalka, Cecilia J Hillard, Brian R Christie

Abstract

Voluntary exercise and endogenous cannabinoid activity have independently been shown to regulate hippocampal plasticity. The aim of the current study was to determine whether the endocannabinoid system is regulated by voluntary exercise and if these changes contribute to exercise-induced enhancement of cell proliferation. In Experiment 1, 8 days of free access to a running wheel increased the agonist binding site density of the cannabinoid CB(1) receptor; CB(1) receptor-mediated GTPgammaS binding; and the tissue content of the endocannabinoid anandamide in the hippocampus but not in the prefrontal cortex. In Experiment 2, the CB(1) receptor antagonist AM251 (1 mg kg(-1)) was administered daily to animals given free access to a running wheel for 8 days, after which cell proliferation in the hippocampus was examined through immunohistochemical analysis of the cell cycle protein Ki-67. Voluntary exercise increased proliferation of progenitor cells, as evidenced by the increase in the number of Ki-67 positive cells in the granule cell layer of the dentate gyrus (DG) in the hippocampus. However, this effect was abrogated by concurrent treatment with AM251, indicating that the increase in endocannabinoid signaling in the hippocampus is required for the exercise-induced increase in cell proliferation. These data demonstrate that the endocannabinoid system in the hippocampus is sensitive to environmental change and suggest that it is a mediator of experience-induced plasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。