Molecular tools for studying the major malaria vector Anopheles funestus: improving the utility of the genome using a comparative poly(A) and Ribo-Zero RNAseq analysis

研究主要疟疾媒介不吉按蚊的分子工具:使用比较 poly(A) 和 Ribo-Zero RNAseq 分析提高基因组的效用

阅读:4
作者:Gareth D Weedall, Helen Irving, Margaret A Hughes, Charles S Wondji

Background

Next-generation sequencing (NGS) offers great opportunities for studying the biology of insect vectors of disease. Prerequisites for successful analyses include high quality annotated genome assemblies and that techniques designed for use with model organisms be tested and optimised for use with these insects. We aimed to test and improve genomic tools for studying the major malaria vector Anopheles funestus.

Conclusions

The mRNA enrichment method makes a substantial, replicable difference to the transcriptome composition, at least partly due to the representation of non-polyadenylated transcripts in the final transcriptome. Therefore, great care should be taken in comparing gene expression data among studies. Ribosomal RNA depletion of total RNA using a kit designed to deplete human/rat/mouse rRNA works in mosquitoes and, we argue, results in a truer representation of the transcriptome than poly(A) selection. The An. funestus genome annotation can be considerably improved with the help of these new RNAseq data and further guided manual gene editing efforts will be of great benefit to the Anopheles research community for studies of this insect's genome and transcriptome.

Results

To guide future RNAseq transcriptomic studies of An. funestus, we compared two methods for enrichment of non-ribosomal RNA for analysis: enrichment of polyadenylated RNA and ribosomal RNA depletion using a kit designed to deplete human/rat/mouse rRNA. We found large differences between the two methods in the resulting transcriptomes, some of which is due to differential representation of polyadenylated and non-polyadenylated transcripts. We used the RNAseq data for validation and targeted manual editing of the draft An. funestus genome annotation, validating 62 % of annotated introns, manually improving the annotation of seven gene families involved in the detoxification of xenobiotics and integrated two published transcriptomic datasets with the recently published genome assembly. Conclusions: The mRNA enrichment method makes a substantial, replicable difference to the transcriptome composition, at least partly due to the representation of non-polyadenylated transcripts in the final transcriptome. Therefore, great care should be taken in comparing gene expression data among studies. Ribosomal RNA depletion of total RNA using a kit designed to deplete human/rat/mouse rRNA works in mosquitoes and, we argue, results in a truer representation of the transcriptome than poly(A) selection. The An. funestus genome annotation can be considerably improved with the help of these new RNAseq data and further guided manual gene editing efforts will be of great benefit to the Anopheles research community for studies of this insect's genome and transcriptome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。